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The free energy difference between a model system and some reference system can 
easily be written as an ensemble average, but the conventional Monte Carlo methods of 
obtaining such averages are inadequate for the fresenergy case. That is because the 
Boltxmann-weighted sampling distribution ordinarily used is extremely inefficient for the 
purpose. This paper describes the use of arbitrary sampling diitributions chosen to facilitate 
such estimates. The methods have been tested successfully on the Lennard-Jones system 
over a wide range of temperature and density, including the gas-liquid coexistence region, 
and are found to be extremely powerful and economical. 

1. INTR~DOCTI~N 

Use of the Monte Carlo method of Metropolis et al. [l] to estimate averages for 
model systems is nowadays a relatively routine matter. This is suitable for mechanical 
properties such as the pressure or internal energy. On the other hand, statistical pro- 
perties such as the entropy and free energy, because they cannot be expressed as 
ensemble averages, have not been so easily accessible. The conventional technique has 
been numerical integration, following the Monte Carlo determination of some deriva- 
tive of the free energy at a series of state points connecting the state or system of 
interest to one with a known free energy. This somewhat cumbersome method is least 
efficient or altogether unworkable when the system undergoes a phase transition, 
because of the difficulty of defining a path of integration on which the necessary en- 
semble averages can be reliably measured, though it is in precisely such cases that 
free-energy estimates would be most useful. Recently [2] we described a generalization 
of the method of Valleau and co-workers [3-S] for measuring free-energy differences 
which overcomes such difficulties for the case of the liquid-gas transition of a 
Lennard-Jones fluid. The free-energy difference between the Lennard-Jones fluid and 
a soft-sphere fluid was determined at a series of densities on an isotherm below the 
Lennard-Jones critical temperature by sampling on an arbitrary distribution designed 
to explore in a single Monte Carlo experiment the parts of configuration space relevant 
both to the Lennard-Jones fluid and to the reference soft-sphere fluid. In this paper 
we demonstrate the feasibility of extending such techniques to explore systematically 
large regions of a phase diagram, applying them to the Lennard-Jones system in a wide 
range of temperature and pressure including part of the gas-liquid coexistence region. 
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2. OUTLINE OF THE METHOD 

The free-energy difference between the “system of interest,” with internal energy 
U(qN) at temperature T, and a reference system, with internal energy U,,(qN) at 
temperature TO , is easily expressed as an ensemble average 

A -- Ao- 
kT kTo 

-ln s ewK- WW + VJolkToN exp(- UoIkTo) dqN 
.f expt- UoIkTo) daN 

( ( 
u uo = ---In exp - kT +kT, 0 o 

= --In(exp(-A U*)), , (1) 

where ( ). denotes an average over a canonical ensemble of reference systems and U* 
is the reduced energy U/kT. Here we will briefly review the qualitative features of the 
Monte Carlo sampling schemes used to obtain an accurate estimate of the right-hand 
side of (1); a more complete and formal description may be found in [2]. 

In practice it is more useful to regard the average in (1) as a one-dimensional integral 
over AU*, i.e., 

A A -- --% = ---In 
kT kTo I m &(A U*) exp(-AU*)d AU*, --m (2) 

where f,(A U*) is the probability density of AU* in the reference fluid, and therefore 
in a conventional Monte Carlo experiment on that fluid. 

In order to determine accurately the right-hand side of (2) such a Monte Carlo 
experiment would evidently have to produce good estimates of the values off,(A U*) 
for that range of A U* over which the product fo(A U*) exp(-A U*) takes on its 
largest values. The corresponding region of configuration space is in fact that which 
would normally be sampled by a conventional Monte Carlo experiment not on the 
reference system but on the “system of interest” itself. This is easy to see for, iff(A U*) 
is the probability density of AU* in such an experiment, 

f(A u*> = .A@ u*> expt--d u*) Qo/Q, (3) 

where Q and Q, are the configurational integrals of the “system of interest” and the 
reference system, respectively. This is of limited usefulness since, without knowledge 
of the free-energy difference being sought, Q,/Q is unknown, and the measurement of 
f(A U*) (along with Eq. (3)) can give only relative values of fo(A U*) in the region 
where its irbsofute value is required. On the other hand, the range of AU* over which a 
conventional reference-system experiment yields absolute values of f,(A U*) will not be 
adequate to evaluate the right-hand side of Eq. (2). Whether or not a reference system 
could be chosen so that the ranges of A U* sampled by the two experiments overlapped, 
thus allowing a proper normalization of fo(A U*) throughout [3, 61, it is clear from the 
sharply peaked distributions of AU* obtained in such experiments that conventional 
Boltzmann sampling is not an efficient way to explore the relevant part of configura- 
tion space. 
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Instead a Markov chain may be generated having a limiting distribution ?r(qlN) 
which differs from the Boltzmann distribution for either system. We write it for con- 
venience in the form 

+fN) wN- Uo(q’NYkTo) 
n(q’N) = J u.(qN) exp( - U,(qN)/kT,,) dqN ’ (4) 

where w(qN) = W(A U*) is a weighting function chosen to favor those configurations 
with values of A U* important to the integral in (2). Provided that IV@ U*) is such that 
the resulting Monte Carlo experiment continues as well to sample adequately those 
parts of configuration space that would be sampled by a Boltzmann-weighted experi- 
ment on the reference system, the unbiased ensemble average of any function B(qN) 
can be recovered from the results of the r-sampling experiment according to 

j (d/w)w exp(-- U,/kT,,) dqN 
(“’ = J(l/w)w exp(-Uo/kTo)dqN 

where ( ), denotes an average over the distribution (4). Similarly fo(d U*) can be 
recovered fromf&l U*), the probability density of d V* in the “biased” Monte Carlo 
experiment based on (4), 

By trial and error W(d U*) is adjusted untilf&l U*) is as wide and uniform as possible; 
the more rapidly varying jb(d U*) is then determined over this same wide range using 
(6). 

Obviously it is required that the sampling distribution r specified by Wshould cover 
simultaneously the regions of configuration space relevant to two or more physical 
systems. We call this “umbrella sampling.” 

In the calculations described in the following sections weighting functions were used 
which brought about sampling of a range of AU* up to three times that of a conven- 
tional Monte Carlo experiment, allowing accurate determination of values off,(d U*) 
as small as 1O-8. Where this type of gain is still not sufficient to sample the entire range 
of d U* values additional (equally powerful) “umbrella-sampling” experiments can be 
carried out with different weighting functions exploring successively overlapping 
ranges of AU*. (Satisfactory weighting functions B’(dU*) are easy to find for such 
ranges of AU*, and convergence of the runs was rapid. Evidently one could in prin- 
ciple always use only a sing/e Monte Carlo run, choosing the sampling distribution 
to cover the whole of the relevant part of configuration space. However, for very wide- 
ranging distributions the choice of a successful W(d U*) becomes tedious; we found it 
more convenient to use more modest overlapping umbrella distributions as described.) 

To make maximum use of the information thus gained on f,(dU*) over a wide 
range of A U*, it often proves useful to consider scaling the reduced energy difference 
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between the two systems by a strength parameter 31. The information obtained on 
f&lU*) then suffices to estimate 

A t-1 All 
kT 3 

- - = --In 
kTo I 

f,(dU*)exp(--aflU*)ddU* 

for all a between 0 and 1 simultaneously. The physical interpretation of these “inter- 
mediate” systems depends on the particular systems and energy difference under 
consideration and is more conveniently discussed in the context of the various types of 
calculations described in the following section. 

3. APPLICATION TO A MODEL SYSTEM 

In order to test the effectiveness of these methods we have applied them to the 
Lennard-Jones fluid. We were especially interested in using the techniques to investi- 
gate a phase transition region, since this is notoriously difficult using conventional 
methods. At the same time there are some reliable earlier results for this system, using 
the more cumbersome conventional techniques, and these afford direct tests of the 
method. 

The investigations were carried out in two stages. 

(a) Altering the Force Law 

We first determined the free-energy difference between a Lennard-Jones fluid, with 
internal energy 

U = 46 C [(U/rij)” - (U/fij)6], (8) 
i<j 

and an inverse-twelve “soft-sphere” fluid [7] at the same temperature, with internal 
energy 

Uo = 4C C (U/fij)12* (9) 
i<j 

This was done at seven densities on the supercritical isotherm kT/e = 2.74. The 
relevant energy difference is then simply 

so that 

Au* = (U,/kT) = (--4E/kT) c (u/Q 
i-3 

(AA/iVkT) = -(l/N) ln(exp(- UJkT)),, , (11) 

and the umbrella sampling (4) is carried out using a weighting function which favors 
soft-sphere configurations with large negative values of U, . These calculations are 
similar in all respects to those previously reported [2] for a subcritical isotherm and 
will not be described in more detail here. We note, however, that at the higher densities 
on the supercritical isotherm the “soft-sphere” reference system and the Lennard- 
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Jones system have suthciently similar configurations that a singfe umbrella-sampling 
experiment is powerful enough to determine AA. This is illustrated in Fig. 1 for the 
highest density studied. The solid line is fW(U,), the probability density of U, that 
resulted from the umbrella sampling; the dotted line is f,( U,), the unbiased probability 
of U, for a soft-sphere fluid as obtained by reweightingf,(U,) according to Eq. (6); 
the broken line is the functionfo(Ud exp(- U,/kT) normalized to unity, also obtained 
by reweightingf,( U,). The weighting function used to carry out this particular experi- 
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FIG. 1. Probability density functions for V, in a 32-particle soft-sphere fluid at kT/c = 2.74, 
No’/V = 0.85. Solid line.,f, , the biased probability density. Dotted line,fO, the unbiased probability 
density obtained by reweightingf, . Broken line, dative values off,(V,/r) exp(- V,!kT) normalized 
to unity. 

TABLE I 

Numerical Weights Used for an Umbrella-Sampling Expc%ime.nt for 32 Soft 
Spheres at Nti/V = 0.85, kT/c = 2.74” 

< -444.3 I ,500,OOO 
-441.6 ~,~ 
-438.9 100,000 
-436.1 25,000 
-433.4 6,600 
- 430.7 1,700 
-427.9 470 
--425.2 150 
- 422.4 50 
-419.7 22 
--417.0 10 
-414.2 5 

-411.5 2.60 
-408.7 1.75 
-406.0 1.25 
-403.3 1.15 
-400.5 1.00 
- 397.8 1.24 
- 395.0 1.70 
-392.3 2.50 
-389.9 4.30 
-386.8 8.50 

>z -384.1 16.00 

o Linear interpolation was used to determine W for energies lying between table entries. 
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ment is shown in Table I. The free-energy differences and the resulting configurational 
free energy 

A, = -kT In(Q/N! SN) (12) 

obtained by adding to dA the soft-sphere free energies of Hoover et al. [7] are shown 
in Table II. 

TABLE II 
Configurational Helmholtz Free Energy for the Lennard-Jones Fluid on the Isotherm kT/e = 2.74, 

Obtained from Eq. (11) 

N Noal V VAIN4 (&IN4 

32 0.500 -5.90 6 0.015 -4.45 
108 0.500 -5.95 * 0.01 -4.50 

32 0.600 -7.62 + 0.015 -3.64 
32 0.700 -9.51 + 0.015 -2.68 
32 0.750 -10.54 + 0.015 -2.11, 
32 0.800 -11.69 f 0.015 -1.56, 

108 0.800 -11.68 * 0.01 -1.557 
32 0.835 - 12.49 f 0.015 -1.124 
32 0.850 -12.85 + 0.015 -0.890 

For these calculations the “intermediate” systems of Eq. (7) would be ones in which 
the attractive part of the energy is scaled by the parameter ol: 

U, = 4~ C ((~/r#~ - 01(u/riJ6}. 
i<j 

(13) 

We have not reweighted the Monte Carlo data to derive any results for this somewhat 
unusual model, though such an approach could be used to obtain information on 
terms in a perturbation theory expansion of the Lennard-Jones free energy about 
that of the inverse-twelve soft-sphere system. A much more useful interpretation of 
this type of reweighting to intermediate systems can be made for the kind of calcula- 
tions described in the following section. 

(b) Scaling the Temperature 

Whenever the reference system has the same internal energy function as the system 
of interest, Eq. (1) takes the simple form 

40 -=+$-ln(exp[-U(&-&)])O, 
kT 

and the most convenient way to write (2) is 

(14) 

49 -= 
kT 
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This is very powerful, because the “intermediate” systems that result from multi- 
plying -U in the exponent by a smaller number (cf. OL < 1 in (7)) can now be inter- 
preted as those with temperatures between T and To . A single sampling of fO( V) can 
therefore give the free energy over a whole range of temperatures. 

As reference systems we used the high-temperature Lennard-Jones systems at each 
of the seven densities in Table II. Umbrella sampling was used to measurefo(u) over 
a range extending to progressively lower energies, using additional sampling stages if 
necessary. For each density, the lowest energies so sampled will determine the lowest 
value of the temperature for which A can be reliably determined using (15). In addition 
to A, the average energy and specific heat can be calculated for any intermediate 
temperature, e.g., 

(16) 

Mean values of quantities which are not functions of U can also be obtained in a similar 
way provided that 8(U), the average value of 0 for a fixed value of the energy is recorded 
for all U during the Monte Carlo run; then 

ce>, = S~dXW &W ew{-uU[(lIkT) - WTdl~ du 

J:,.h(u) exd- W/W - UlW-J1~ dU ’ (17) 

Such ideas were first proposed and successfully carried out by McDonald and Singer 
[8, 91 who attempted relatively small temperature changes (615 %) in the data from 
a single Boltzmann-weighted experiment. They become powerful in the present context 
because of the much larger energy ranges that can be spanned by the nonphysical 
umbrella samples. The results of a typical two-stage experiment for 32 Lennard- 
Jones particles near the triple-point density are shown in Fig. 2. The solid lines show 

’ i\ I I I I 
I \ 

0.08 - : : 
N = 32 

I I N&V - 0.835 

FIG. 2. Probability density functions of the total energy for 32 Lennard-Jones particles from 
umbrella sampling. 
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the energy distributions resulting from the two umbrella-sampling experiments while 
the broken lines are two examples of the reweighting of these data to obtain the 
energy distribution at various temperatures. This is typical of the possible gain-the 
energy and free energy of the system at fixed density in the temperature range 0.7 ,< 
kT/c < 2.8, i.e., from the triple-point temperature to twice the critical temperature, 
are determined from only two umbrella-sampling experiments. For a system of 108 
particles, where the Boltzmann distributions are much narrower relative to the total 
energy range, the same information can still be obtained with four umbrella experi- 
ments. 

(c) Corroboration of the Results 

In Table III some values of the free energy calculated from umbrella sampling are 
compared with previous Monte Carlo measurements by Hansen [IO, 111 and by 
Levesque and Verlet [12], based on integration of pressures calculated for an 864- 

TABLE III 

Configurational Free Energy of the Lennard-Jones Fluid Obtained by Umbrella Sampling” 

kT/e NC+/ V N AC/NC 
FVWi0ll.S 

Method* Monte Carlo results 

2.74 0.80 

1.35 0.50 

1.35 0.80 

1.15 0.75 

0.75 0.50 

0.75 0.60 

0.75 0.80 

32 -1.565 

108 -1.556 
I -1.56” 

32 -3.791 II -3.85d 

32 - 3.236 

108 -3.229 i 
II -3.25* 

32 I 

-3.633 I 
-3.65d 

-3.638 II 

32 -3.657 II -3.69” 

32 -3.913 II -3.93” 

32 -4.265 

108 -4.265 
II -4.27” 

1.16 0.835 32 -3.444 II -3.83’ 

0.902 0.835 32 -3.966 II -3.92’ 

0.81 0.835 32 -4.168 II -4.101 

o The error usually quoted for the free energies of the final column obtained by thermodynamic 
integration is 0.01-0.03N~. The uncertainty in the present free energies includes this error for the 
reference system plus an uncertainty of O.OlNc in AA. 

b Method I, calculated using Eq. (11); method II, calculated using Eq. (15). 

,: 1 ;;;I; 

8 = [ll]. 
’ = [13]. 
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particle system. The table also compares our results with estimates by Gosling and 
Singer [13] based on an intuitive “free-volume” interpretation of acceptance ratios in 
Monte Carlo runs. The quoted results of the umbrella-sampling methods are only a 
few values selected for these comparisons: data are of course available for the densities 
studied at all temperatures in the range 0.7 < kT/e < 2.8. 

Over the whole range of temperature and density the present results agree with those 
of the pressure integrations to within the combined statistical uncertainties. This is so 
whether A, is determined by relating it directly to a soft-sphere reference system or by 
temperature reweighting to relate it to a high-temperature Lennard-Jones fluid 
using (15). At kT/e = 1.15, iVoS/V = 0.75, both of these umbrella-sampling methods 
have been used independently, and agree excellently with each other and with Hansen’s 
results. 

Most of the calculations reported here are for a relatively small system of 32 par- 
ticles. Consequently the overall agreement with the thermodynamic integration results 
for 864 particles seems to con&m our earlier conjecture [2] that the N-dependence of 
free-energy differences between dense systems is very mild. For example, calculations 
by the present methods for 32 and 108 particles at N&j/Y = 0.8 (cf. Table III) show 
no statistically significant N-dependence. This is very pleasing since it means that good 
free-energy estimates can be made very economically, where there exist good data for 
a suitable reference system. 

FIG. 3. Configurational Helmholtz free energy of the Lennard-Jones fluid in the vicinity of the 
liquid-gas coexistence curve. The open circles are freeenergy estimates based on Eq. (ll), the closed 
circles are based on E!q. (15). The triangles are the results of Verlet and co-workers [lO-121, the broken 
curves the fitted equation of McDonald and Singer [14]. 
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Figure 3 shows further comparisons between some free-energy results obtained by 
umbrella-sampling and those of thermodynamic integration results of the Orsay 
group [lo-121 (triangles) and of McDonald and Singer [14] (broken lines [15]) in 
the vicinity of the gas-liquid coexistence curve. The open circles are the present results 
for direct soft-sphere to Lennard-Jones free-energy estimates using (1 l), and include 
some of the results we reported earlier [2], the closed circles are results of the tempera- 
ture-reweighting procedure, Eq. (15). The solid lines are simply visual aids connecting 
isothermal free-energy estimates of this work, and the error bars show one standard 
deviation of the mean of AA. The agreement of the two umbrella-sampling routes to 
A, on the isotherm kT/e = 1.0579 is particularly gratifying, as the original starting 
points were two quite different soft-sphere systems, one at kT/e = 2.74, the other at 
kT/e = 1.0579. 

Although portions of the three low-temperature isotherms of Fig. 3 are well within 
the liquid-gas coexistence region and, when taken together with the low-density 
virial series, would clearly violate the stability criterion (PA/aV2) 3 0, no associated 
convergence problems were encountered in the umbrella-sampling experiments. 
Apparently the supercritical Lennard-Jones fluid is as suitable as the soft-sphere fluid 
proved to be [2] for use as a reference state from which umbrella-sampling is able to 
explore successfully the unstable regime. 

This close agreement between the present free energies and those obtained by 
thermodynamic integration is to be contrasted with some rather large discrepancies 
in the case of the free energies [ 161 resulting from the method for estimating entropies 
proposed by Gosling and Singer [ 131 (cf. Table 111). For example, the disagreement of 
0.4N~ at kT/c = 1.16 corresponds to an error of 20 % in the nonideal entropy (the 
quantity actually estimated by their technique) and is equivalent to an overestimation 
of the configurational integral of a 108-particle system by a factor of 10ls. It appears 
that that technique cannot ,be relied upon to give quantitative results for the entropy 
and free energy. 

TABLE IV 

Unbiased Mean Internal Energy for the Lennard-Jones Fluid 

N-31 V kT,‘c <u~dWo 

Umbrellaa Conventional* 

0.50 1.35 -3.32 -3.37 (a) 
0.70 1.35 -4.66 -4.68 (a) 
0.75 0.827 -5.38 -5.38 (b) 
0.75 0.977 -5.26 -5.244 (c) 
0.75 1.304 -5.01 -5.02 (b) 
0.80 0.092 -5.65 -5.656 (c) 
0.80 1.06 -5.51 -5.507 (c) 

0 Umbrella sampling: Obtained by reweighting the results of umbrella sampling using Eq. (16). 
b Conventional: (a) Monte Carlo [12]; (b) Molecular dynamics [17]; (c) Monte Carlo [14]. 
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Finally, in Table IV, the mean internal energy U of the Lennard-Jones fluid as 
determined by reweighting the results of umbrella-sampling experiments according to 
Eq. (16) is compared with conventionally determined values [ 12, 14, 171. The generally 
good agreement is best for the higher densities, for which neglect of the density fluctua- 
tions caused by use of the small 32-particle system would be expected to have the least 
effect. The standard deviation of the mean for the energies obtained by reweighting 
data from umbrella-sampling Monte Carlo experiments, such as those in Table IV, is 
about 0.02N~ for a run of 3-5 x lo5 configurations, somewhat higher than for a 
Boltzmann-weighted experiment of similar length. These standard deviations are 
estimated in the customary way [18] by treating averages over sequences of m steps 
within the entire Monte Carlo run of M steps as M/m independent estimates to which 
the appropriate statistical formulas may be applied. The determinations of the value 
of m constituting an independent sample must be treated with more than usual care 
when recovering unbiased averages from umbrella-sampling experiments. In Eq. (5), 
for example, the values of the numerator and denominator will be strongly correlated 
for short blocks of configurations. As a result the mean value calculated as 

will in general depend on m, where ( >i is an average over the ith block of m configura- 
tions. In practice the appropriate block size has been determined in each case by 
increasing m until no systematic trends could be detected in either the average given 
by (18) or in the standard deviation of the mean. The free-energy difference (2) is 
itself the logarithm of the average calculated, and can therefore be obtained with great 
precision, usually to within about 0.005NkT for N = 108. This high precision makes 
the technique ideally suited to the study of mixtures, where it is exactly the relatively 
small free-energy difirences that are the physically important but computationally 
elusive property. In fact the techniques described here have now been exploited to 
determine the free energy and phase diagram of a model binary mixture with an upper 
critical solution temperature [ 19, 201. 

4. DISCUSSION 

The basic idea of designing Monte Carlo experiments to sample the configuration 
space of the system according to an arbitrary distribution of states can be useful in 
several ways. First, such sampling procedures render estimates of free-energy diifer- 
ences of the form (exp(--d(U/kT))), practical and efficient. This in turn eliminates 
the need of the more roundabout and expensive thermodynamic integrations, and is 
particularly advantageous when the system undergoes a phase transition, since it 
appears that by applying umbrella-sampling which embraces a stable reference system, 
information can be collected in or near the unstable regions of the phase diagram of 
the complete system without the usual associated convergence problems. Secondly, 
because umbrella distributions of the type described here span a much larger region of 
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configuration space than do Boltzmann-weighted Monte Carlo experiments on either 
the reference system or the system of interest, a correspondingly greater amount of 
information about the system can be obtained simply by collecting and later re- 
weighting the appropriate data. For example, Levesque and Verlet [ 121 used data 
from five Monte Carlo runs to establish a path of integration between a soft-sphere 
fluid and the Lennard-Jones system whereas a single umbrella-sampling suffices for 
32 particles at high temperature. For a fluid of 32 Lennard-Jones particles at fixed 
density only two umbrella-sampling experiments are needed to sample the regions of 
configuration space appropriate to all temperatures between that of the triple point 
and twice that of the critical point, whereas numerous runs (of similar length) would 
be required for conventional l/T integrations. The cost efficiency of the method is 
therefore high. Such sampling gains could likewise be realized for the other commonly 
used ensembles (isothermal-isobaric and grand canonical) with relatively straight- 
forward modifications of the techniques used here for the canonical case. 

In fact, although the choice of d U as the single argument of the weighting function 
w defined in (4) was a natural one for the free-energy difference problem, the general 
case in which w is any arbitrary function of the coordinates can extend the usefulness 
of the biased sampling to a wider range of problems. For example, we have used such 
a sampling scheme to measure the communal entropy of a hard-sphere fluid [4], 
though the sampling distributions used did not turn out to be particularly efficient. 
The method has been quite successful, however, in Monte Carlo experiments designed 
to get particular microscopic information [21] (rather than merely macroscopic 
thermal averages) where the sampling problems are different in nature but similar in 
magnitude to those associated with measuring free-energy differences according to 
Eq. (1). 

Superficially, the most serious limitation of the sampling techniques described here 
may appear to be the lack of a direct and straightforward way of determining the 
weighting function to use for a given problem. Instead, w(qN) must be determined by a 
trial-and-error procedure for each case, often beginning with the information avail- 
able from the distribution in a very short Boltzmann-weighted experiment which is 
then broadened in stages through subsequent short test runs with successively greater 
bias of the sampling. What this rather inelegant procedure lacks aesthetically is more 
than compensated by the efficiency of the ultimate umbrella-sampling experiment. 
The test runs require a small amount of time relative to the final production run and 
are necessary anyway, even in the absence of biasing weights, in order to age the system. 
One cannot expect to replace this trial-and-error procedure with a trustworthy a priori 
estimate of the correct value of w(qN), not only because of the great variety of problems 
to which the technique might be applied, but because a guess sufficiently accurate to 
work would constitute prior knowledge off,(d U*) and hence of A.4 itself. At present, 
the most efficient trial-and-error procedure involves an interaction between the trial 
computer results and human judgment. It is important to emphasize, however, that 
the necessary experience seems to be very readily obtained. A possible embellishment 
of the technique would be to program the computer to carry out itself the trial-and- 
error development of a good weighting function. 
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